Inositol phospholipids regulate the guanine-nucleotide-exchange factor Tiam1 by facilitating its binding to the plasma membrane and regulating GDP/GTP exchange on Rac1.

نویسندگان

  • Ian N Fleming
  • Ian H Batty
  • Alan R Prescott
  • Alex Gray
  • Gursant S Kular
  • Hazel Stewart
  • C Peter Downes
چکیده

Binding of the Rac1-specific guanine-nucleotide-exchange factor, Tiam1, to the plasma membrane requires the N-terminal pleckstrin homology domain. In the present study, we show that membrane-association is mediated by binding of PtdIns(4,5)P(2) to the pleckstrin homology domain. Moreover, in 1321N1 astrocytoma cells, translocation of Tiam1 to the cytosol, following receptor-mediated stimulation of PtdIns(4,5)P(2) breakdown, correlates with decreased Rac1-GTP levels, indicating that membrane-association is required for GDP/GTP exchange on Rac1. In addition, we show that platelet-derived growth factor activates Rac1 in vivo by increasing PtdIns(3,4,5)P(3) concentrations, rather than the closely related lipid, PtdIns(3,4)P(2). Finally, the data demonstrate that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) bind to the same pleckstrin homology domain in Tiam1 and that soluble inositol phosphates appear to compete with lipids for this binding. Together, these novel observations provide strong evidence that distinct phosphoinositides regulate different functions of this enzyme, indicating that local concentrations of signalling lipids and the levels of cytosolic inositol phosphates will play crucial roles in determining its activity in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the Rac1-specific exchange factor Tiam1 involves both phosphoinositide 3-kinase-dependent and -independent components.

The small GTPase Rac1 is involved in regulating membrane ruffling, gene transcription, cell-cycle progression and cell transformation, and some of these events are blocked by inhibitors of phosphoinositide 3-kinase (PI 3-kinase). Moreover, Rac1 can be activated by several guanine nucleotide exchange factors, which facilitate the release of GDP. We therefore investigated the ability of PI 3-kina...

متن کامل

Ankyrin–Tiam1 Interaction Promotes Rac1 Signaling and Metastatic Breast Tumor Cell Invasion and Migration

Tiam1 (T-lymphoma invasion and metastasis 1) is one of the known guanine nucleotide (GDP/GTP) exchange factors (GEFs) for Rho GTPases (e.g., Rac1) and is expressed in breast tumor cells (e.g., SP-1 cell line). Immunoprecipitation and immunoblot analyses indicate that Tiam1 and the cytoskeletal protein, ankyrin, are physically associated as a complex in vivo. In particular, the ankyrin repeat do...

متن کامل

The phosphomimetic mutation of syndecan-4 binds and inhibits Tiam1 modulating Rac1 activity in PDZ interaction–dependent manner

The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism o...

متن کامل

Rac1 activation comes full circle.

The Rac1 small GTPase is responsive to a large array of extracellular signals and in turn controls a wide variety of cellular functions—including actin dynamics. New findings add an additional layer of intricacy to the already complex process of regulating Rac1 activity, via a positive feedback loop involving the actin-binding protein coronin 1A, the Rac1 exchange factor ArhGEF7, the Rac1 effec...

متن کامل

Balanced Tiam1-rac1 and RhoA drives proliferation and invasion of pancreatic cancer cells.

Tiam1 is a rac1-specific guanine nucleotide exchange factor, and Tiam1-rac1 is involved in a number of cellular processes. Rac1 and RhoA act as molecular switches that cycle between GTP- and GDP-bound states to balance the activities of rac1 and RhoA. The downregulation of rac1 activity leads to upregulation of RhoA activity, which promotes invasion and migration of pancreatic cancers cells. At...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 382 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2004